T v v —

al
(-]
O
e d

c‘:tives are hard to evaluste,
easperformance of the integrated radistion-dif-
pfraction computer programs that

“*ZReported.

TOPICS ON BOUNDARY-ELEMENT SOLUTIONS OF
WAVE RADIATION-DIFFRACTION PROBLEMS

Paul D. Sclavounos and Chang-Ho Lee
Department of Ocean Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Y B s e B B By g 4
AU e PR A B Pl - -

e .
i . . 3 ‘Jaen GPD OV°d

(Preliminary copy of paper to be presented at the 4th Numerical Ship Hydrodynamics Conf.)

Abstrsct

Two topics on the numerical solutiom of
boundary-integral equations arising io linear
wave-body interactions are discussed. The
properties of a spectral technique for the
solution of the integral equation sre anslyzed
and compsred to the conventional collocation
method. It is shown that, using this tech-
nique, hydrodynamic forces predicted by the
source-distribution method are identical to
those obtained from the direct solution for
the velocity potential. The second part of the
paper investigates the numerical properties of
a method which removes the effects of the
irregular frequencies for bodies of general
shape at s small computational and algorithmic
overhead. Its performance is illustrated in
the evaluation of the heave and swvay hydro~
dynamic coeffxcxenc;_of a circle lnd & rectap-

sle. oo T T
1. Introduction J

The solution of boundary-integral equa-
tions for the evaluation of the linear wave
loads on maripne structures is s common task im
today's practice. Its success is due to its
algorithmic simplicity, the ease of describing
the surface of a three~dimensional body by a
collection of facets and the moderate size of
the linear systems to be solved. These are
illustrated by its widespread use by asero-
dynamicists [ Hess and Smith (1966) 1.

In the presence of a free surface, the
efficiency of the method relies on the fast
evaluation of the wave-source potential which
is a substantially more complex fuaction to

—J compute than its counterparts in an infinite

<" fluid and an scoustic medium. Existing methods
for the computation of its values and deriva-
since it is the

is usually
For the three-dimensional comput-
atiore reported in the present paper, a set of
very efficient algorithms developed by Newman
(19858) for water of finite and infinite depth
and coded in the subroutine FINGREEN have been
utilized.

A distinct feature of wave boundary-
integral equations are the " irregular "
frequencies. They coincide with the eigen-
frequencies of the interior Dirichlet or
Neumann problems, and are known to introduce
large errors in the predicted hydrodynamic
forces, often over a substantial band of
frequencies. A comprehemnsive snalysis of the
mathematical properties of boundary-integral
equations, {(with emphasis in acoustics), along
vith a survey of techniques used for the
removal of the irregular frequencies, is given
in the recent book of Colton and Kress (1983).
The numerical aspects of boundary-integral, as
well as finite-element, hybrid-integral and
finite-element/boundary-integral wmethods in
free-surface flows are reviewed by Mei (1978),
Yeung (1982) end Euvrard (1983).

The first part of the paper anslyzes the
properties of a technique for solving bound-

‘ary-integral equations. It is oftem quoted in
/+the litersture as the Galerkin method.

In most
implementations of the boundary-integral for-
mulation, the body surface is aspproximated by
a collection of N plane quadrilaterals or tri-
sngles. The cooventional collocstion method
enforces the validity of the equation at a
single point on esach panel, usually the cen-
troid. The method proposed here, averages the
equation over each panel and avoids the need
to select a collocation poinmt. It belongs in
the general category of "spectral" tech-
niques which express the solution in terms of
N basis functions, and then pre-integrate the
product of the equation to be solved with each
function of this set. Here, the i-th basis
function has the value one on the i-th panel
and zero oo the rest of them.

The Galerkin technique has a set of inter-
esting symmetry properties. The diagonal ele-
ements in the added-mass and damping matrices
obtained from the source~distribution and the
Green method are identical. The off-diagonal
coefficients A, ., B.. obtaxned from one
method are 1den31caf to the A, . coef=-
ficients which follow from %he 'L’ther. More-
over, the exciting forces obtained from the
solution of the Green integral equatiorn for
the diffraction velocity potential, are

identical to those obtained from the Haskind
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relations with the radiation velocity poten-
tisl supplied by the source-distribution
method, and vice versa. Analogous results do
pot hold in the collocation method.

Computations of the hydrodynamic coef-
ficients for a semi-submerged spheroid and
truncated vertical circular cylinder have been
carried out by Breit, Newman and Sclavounos
(1985). No substantial difference from the
predictions of the collocation method has been
observed. Near the irregular frequencies, the
Galerkin method led to a reduction of the
error and the frequency bandwidth over which
it occurs. In primciple, it requires an
additionsl numerical integration for the
evaluation of the infuence of panel i on panel
jo In Section 2, sn algorithm is proposed
vhich reduces substantially this overhead,
wvhile maintaining the main features of the
Galerkin technique.

For the Greem integral equation, the ir-
regular frequencies coincide with the eigen-
frequencies of the interior Dirichlet problem.
Both in two and three dimensions, they can be
suppressed by adding an artificial lid on the
interior free surface as suggested by Ohmatsu
(1975) in connection with the source-distri-
bution method, and by Kleinman (1982) for the
Green integral equation. This approach is
effective, but may lead to a substantial
increase in the computational effort, espe-
cially in three dimensions. Ogilvie and Shin
(1977) suggested an alternative route by
adding a wave source at the origin of the
coordinate system, assumed to lie on the
interior free surface, acting as an absorber
of the energy associated with the interior
Dirichlet eigensolutions. This approach was
implemented in two~dimensions and was shown to
successfully remove the first irregular
frequency, at a small additional computational
effort. Ursell (1982) later established that
any number of irregular frequencies can be
removed if a sufficient number of singular-
ities are added at the origin. No implementa-
tion of this method in three dimensions is
known to the authors.

Related work im acoustics predates the
studies of marine hydrodynamicists by about a
decade. Refe remces to early studies can be
found in Colton and Kress (1983). Burton and
Miller (1971) proposed a methodology which
exploits the different location of the irregu-
lar frequencies of integral equations of the
first and second kind. The linear combination
of two such equations for the exterior Neumann
problem has a unique solution on the entire
real frequency axis, and thus is free of ir-
regular f-equencies. The condition for this to
occur is that one of the two equations must be
multiplied by the imaginary unit times a
positive constant. It turns out that the asso-
ciated interior homogeneous problem is of
mixed Dirichlet and Neumann type, the two
being 90 degrees out of phase. Non-trivial
eigen solutions cannot exist since on the
interior boundary the normal velocity is 90

degrees out of phase from the velocity poten-
tial, or in phase with the pressure. Thus
energy may flow out of the interior domasin
preventing the persistence of eigemsolutionms.
The direction of the energy flux is controlled
by the sign of the constant used in the linear
combination of the two equatioms.

Euvrard, Jami, Lenoir and Martin (1981)
vere the first to adapt this methodology to
wave~body interaction problems. Their
formulation combines a layer of fimite
elements in the fluid domain which encloses
the body boundary, with a boundary-integral
representation in the exterior domsin analo-
gous to that outlined in the preceding para-
graph. Computations of the hydrodynamic coef-
ficients of three-dimensional bodies were
found free of the effects of irregular
frequencies.

In the present paper the method of
Burton and Miller (1971) is applied to the
solution of the radiation problem. It corre-
sponds to the limit of s finite-element layer
of zero thickness in the scheme of Euvrard et
al. A circle and a rectangle have been snal-
yzed. Their boundary has been approximated by
straight segments and the equation has been
satisfied at their mid-point, according to the
collocation method. In both the heave and sway
added mass and dawmping coefficients, errors
have been suppressed at and in the vicinity of
the irregular frequencies.

The associated computational and algo-
rithmic overhead is small, since the effort
involved in the computation of the second
derivatives of the wave source potential (they
appear in the kernel of the equation of the
first kind) is not large relative to that
required by its value and first derivatives.
In deep water this overhead is negligible
because of the existence of recurrence
relations which relate derivatives of high to
those of lower order. Moreover, the size of
the linear system is unaffected by the
superposition of two equations over the same
number of panels.

The method is currently being extended to
three~dimensional problems where the irregu-
lar-frequency effects are generally less
prooounced, and is expected to be effective
for bodies of genmeral shape. This is believed
to be the case because the addition of the
integral equation of the first kind to the
Green equation essentially corresponds to an
additional singularity distribution on the
actual body surface rather than at a selected
set of points internal to its boundary.




2. .The Calerkin method

We are interested to evaluate the hydro-
dynamic pressure on the surface of & body
interacting with regular free-surface waves.
Linearity, and the assumption of irrotstionsl
flow, allows the reduction of the problem to
the evalustion of a velocity potential ¢ (x)
which satisfies the Laplace equation in the
fluid dowmain, the linear free-surface con-
dition, a prescribed normal gradient v(x) on
the body surface, the vanishing of its gradi-
ent at large depths and a radiation condition
at infinity.

Two boundary-integral formulations are
common, and both can be derived from Green's
theorem. According to the source-~distribution
method, ¢ (x) is represented by a distribution
of wave sources on the body surface,

o(x) = [ o(E)G(x;£)dE (2.1)
S

vhere G(x; { ) is the wave-source potential at
the point x due a unit source located at the
point I ., Enforcing the normal velocity on
the body boundary leads to an integral equa-
tion for the stremgth 3 (x) of the source
distribution,
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(2.2)

The application of a different variant of
Green's theorem leads to an integral equation
with the velocity potential itself as the
unknown,

s(p) 2L gg o [ 2 g

> EY

—%o(x) +‘-'

(2.3)

Equations (2.2) and (2.3) are sdjoint Fredholm
integral equations of the secound kind, since
the kernel of (2.2) is obtasined from the
transposition of the arguments of the kernel
of (2.3). The preference of the one versus the
other depends on the application for which
they are being considered. I1f, for example,
the flow velocities are required then equa-
tions (2.1)-(2.2) appear to be at an sdvantage
since the evaluation of the second derivatives
of G is not necessary. If, on the other hand,
only quantities dependent oo the velocity po-
tentis!l are needed, then (2.3) must be prefer~
red due to the reduced storsge requirements.

Their numerical solution is usually ob-
tained by approximating the body boundary by a
collection of plane quadrilaterals or tri-

angles, sssuming that the unkmown functions
have constant values on each panel, The
equations are enforced at a set of collocation
points ususlly taken to be the centroida., The
Galerkin technique, proposed here, sverages
instead the equations over esch panel. In

discrete form, equations (2.1)-(2.2) become,
»
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vhere A. is the area of the i-th panel. The
integration with respect to the x-variable
introduced by(s:,he ?g}erkin averaging, allows
the matrices D » D and G to preserve
the symmetry properties of the corresponding
operators in the continuous case. In partic-
ular, the matrix G is symmetric, thus

35 7 C41 (2,10)

and the matrices D(C) and D(S) are the

transpose of each other, or

56 | p(S

i =053 (2.1

The proof of (2.10) follows from the symmetry
of the wave-source potential with respect to
its arguments, and of (2.11) by exchanging the
role of the dummy variables under the integral
sigos in (2.7) and transposing the i and j
indices. Analogous results do not hold in the
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collocation method, where the corresponding
matrix elements are obtained by replacing the
integration with respect to the x-variable in
(2.4)-(2.9) by the selection of a collocation
point.

Let A = diag( Ai)’ and define,

D= -%AH)(G) (2.12)

The scolution for the velocity potential
obtained from equations (2.4)-(2.7) in terms
of the matrices A, D and G, is given by

-> -l -l -

e aalcdH v (2.13)
and the solution of (2.8) by

P UDE ol P (2.14)

For an arbitrary vormal-velocity vector v, a
necessary condition for the identity of the
tvo solutions (2.13)_and (2.14) is the equa-
lity of the matrix D "G with the matrix
A G(D') "A, or equivaslently the

symmetry of the matrix
w=aplc (2.15)

A proof that W is symmetric did not prove
possible. Numerical experiments for a wmodel
problem in two dimensions in an infinite fluid
revesled that the mstrix W is "slmost symme-
tric”, mesning that elements with symmetric
locations relative to the principal diagonal
agreed to 2-3 significamt digits. This sug-
gests the proximity of the vaslues for the
velocity potentisl obtained from each method.

The hydrodynamic forces can be obtained
from the solutions (2.13) and (2.14) by multi-
plying the velocity potential by the panel
area A. and the vector u. which
represents the "direction" 2f the force we are
interested to evaluate. This operation is
equivalent to 8 pre-multiplication of the
vel%city-potentill vector by the vector
(A3)'., The resulting hydrodynamic force
obtained form the source-distribution method
is given by

H =u'W v (2.16)

and from the direct solution of the Green
integral equation,

(3 e ¥ (2.17)
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Both H(S) and B(G) are

Three properties followv from equations (2.16)
and (2.17) :

complex scalars.

1) For the diagonal hydrodynamic coefficients
- -iB /w , k=1, ,,,,6, the
vectors u, and v. are equal to the
zaluel on’ the j—‘:h panel of the unit vector
o which points out of the fluid dowmain.
In this csse the hydrodynsmic coefficients
predicted by the two methods are identical,
since

2) FPor the off-disgonal coefficients, it
follows from (2.16) and (2.17) that

(8) o 46
"xx HlK (2.19)
3) Por the diffraction exciting force, ve
define
8¢°
vy =05 )y (2.20)

where 2 , is the incident-wave velocity
potentiu?. If is the diffraction
exciting force in the k-th directiom, it
can bde deduced from (2.16) and (2.17) that
the force predicted by the source-distri-
bution/Green method by directly solving the
diffraction problem, is identical to the
force obtained from the use of the Haskind
relation with the velocity potential
supplied by the solution of the Green/
source-distribution integral equation.

Computations of the hydrodynamic coeffi-
cients of a spheroid snd a vertical circular
cylinder using both methods have been carried
out by Breit, Newman and Sclavounos (1985), A
radiastion~diffraction computer program has
been written for .he hydrodynamic analysis of
bodies of general shape. Their wetted surface
is approximated by a collection of plane
quadrilaterals and triangles, as illustrated
in Figures | and 2 for a quarter of the spher-
roid and the vertical cylinder respectively.

For inter-panel distances small compared
to their characteristic dimensions, the
Rankine singularity (including when appropri-
ate its image with respect to the free surface
and the sea bottom) is subtracted from the
wave-source potential and integrated analytic-
ally over the panels. For large distances
between the panels the total wave-source
potential is integrated by quadrature. The
algorithms for the integration of the Rankine
singularities on plane quadrilaterals and for
the evaluation of the wave-source potential
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N
H have been developed by Newman (1985a & b) and
coded in the subroutines FINGREEN and RPAN
respectively. The four-node Gauss-Legendre
quadrature, adapted to a plane quadrilateral
of general shape, has been used for the
evalustion of influence coefficients im both
the collocation and Galerkin methods. Sugges-
tions on the order of the quadrature to,be
used in a production radiation-diffraction
computer program are discussed at the eand of
the section.

The hydrodynamic-force predictions of the
collocation and Gslerkin methods did not
differ substantially away from the irregular
frequencies. Tabulated results of bhigh
accuracy are reported in Breit, Newman and
Sclavounos. Figures 3 and 4 illustrate the
behaviour of the two methods at the first
heave irregular frequency of the spheroid and
the cylinder respectively. The solid lines

represent the predictions of an independent Figure 1 : Discretization of a quarter of the
curvilinear-panel program for the spheroid, surface of a prolate sphepoid (B/L =
and a Fourier-transformed time-domain solutioun 1/8) by 64 panels.

for the cylinder. The Galerkin predictions
appear to be less sensitive to the irregular-
frequency errors, especially for the spheroid
coefficients.

The Galerkin techmique requires an addi-
tional integration for the evaluation of each
element in the D.. and G,. matrices, {eq.
(2.4), (2.9)] Yelativéd to the collocation
method. It is reasonable to assume that the
accuracy in the integration over the i-th
panel needs to be no higher than that over the
j=th panel. Concerning the Rankine source and
dipole, analytical expressions for the double
integral over a pair of plane quadrilaterals
are not koown to the authors. When the analyt-
ical expressions are utilized for the evalu-
ation of the Rankine source and dipole inte~-
grals over the j-th pspel, s four-node Gauss-
Legendre quadrature is suggested for the inmte-
gration over the i~th panel. Since this result
is frequency-independent it may be evaluated
once and stored.

The integrals of the remaining slowly-
varying but frequency-dependent parts, can be
evaluated using s quadrature scheme of the
same order for the j=-th and i-th panoels. In
the collocation method, the use of a four-node
Gauss quadrature causes an increase by a
factor of four in the number of evaluations of
the wave-source potential, versus the single-
node centroid integration. This factor may be
as high as sixteen in the Galerkin method.

Optimality requires that errors due to qua- Figure 2 : Discretization of a quarter of the
drature spd the approximation of the geometry vetted surface of a truncated
by plane panels must be of comparable mag- vertical cylinder (R/T = 2) by 128

nitude. This may be achieved by increasing the panels.

number of panels and utilizing s single-node
quadrature. This decision depends on the ;
efficiency in the evaluation of the wave- l
source potential, the solution of the linear
systen and the computing environment. If the
single-node-quadrature route is selected, the
collocation and Gslerkin methods are compara-
bly expensive over s large number of fre-

<
- ]
e

quencies.
), ———
\
»,
E‘—!~.;‘-,~q.__“‘"."‘.4.”*.‘:;:;.';.v-;‘.-:".'1. . ‘-.' 3 e e -.- Ce e _..". .'.'.-“.‘.‘. ..r...'...’...‘..- et AT et et
S RPN SV S SRR N, SN PPN AL PR SR LR oI -’n-‘ RN




°d

T

Demping

.0
.

0.7

Added naoe
.0
e
]

=16
e Collocstion
® Galerkis

0.4
L4

/2 .

. e A P "

®
Figure 3 : Beave added-mass and damping
coefficients of a prolate spheroid (B/L = 1/8)
near the first irregular frequency, msde von~
dimensional by the displaced volume the water
density and the frequency of oscillstion. The
solid line is obtained from an independent
curvilinesr-panel program and the tick marks
are predictions form the plane-panel program.
[From Breit, Newman and Sclavounos (1985)]
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Figure 4 : Heave asdded-mass and damping
coefficients of s truncated vertical cylinder
near the first irregular frequency, made non-
dimensional by the displaced volume the water
density and the frequency of oscillation. The
solid line is obtained from the Fourier trans-
form of an independent time-domain program and
the tick marks are predictions form the plane-
pane! program. (From Breit, Newman and
Sclavounos (1985)]
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3. Irregular frequencies

The Green integral equation (2.3) is known
to possess npon-vapishing bomogeneous solutions
at a discrete set of frequencies which corre-
spond to the eigenfrequencies of the interior
Dirichlet problem, Their detrimental effect in
the numerical predictions of the added-mass
snd damping coefficients of surface-pierciszg
bodies has been illustrated in Figures 3 and
4,

Although a discrete set in the continuous
case, their presence in the discrete problem
is manifested by substantial errors, often
over 8 quite wide frequency band sround their
exact location. This is due to the bad “con-
ditioning" of the integral equation (2.3) not
only at, but also in the vicinity of the ir-
regular frequencies. Bad conditioning is
known to csause large errors in the solution
when a small perturbation is imposed ob the
equation. In wave-body interactions sources of
such perturbations are:

1) The approximation of the body boundary.

2) The approximation of the velocity poten-
tial.

3) Errors in the evaluation of the wave-
source potential.

4) Quadrature errors in the evaluation of
the influence coefficients.

5) The approximate way in which the equationm
is being satisfied.

6) Roundoff errors in the solution of the
linesr system.

A measure of the ratio of the output
versus the input errors in the solution of
integral equations is often supplied by the
“"condition number". Explicit definitions of it
are known for watrix equations. Thus the
discrete form of an integral equation may be
used to obtain an estimate of it.

Numerical experiments indicate that the
errors and frequency bandwidth of the irregu-
lar frequencies decrease with increasing
numbers of panels. The associated computation-
al cost, however, prevents this to be comsid-
ered a visble trestment in practice. A short
survey of successful methods for the removal
of the irregular-frequency effects has been
given in the Introduction.

The method of Burton and Miller (1971),
developed for the solution of an acoustic
scattering integral equation, is here adapted
to the wave-body interaction problem. The
Green equation (2,3) is valid for a point x on
the body boundary. If x lies in the fluid




domain, the factor 1/2 which wmultiplies the
first term needs to be replaced by unity.
Taking the derivative of both sides in the
direction of the unit vector @ which points
out of the fluid domain, and letting the point
x approach the body bouundary, we obtain

_ 39(x) + 3 [ 5() 3G(E ;%) dE =
n 0 ! M on_
X x S 3
1 3¢ 3¢  3G(x;E)
"t [ T 3.1
X S £ b3

For a prescribed normal velocity, (3.1) is an
integral equation of the first kind for the
velocity potential on the body boundary. Its
irregular frequencies correspond to the eigen~
frequencies of the interior Neumsnn probles.
Burton and Miller (1971) show that the linear
combination (2.3) + i 2(3.1), or

1 [ 3 2. . -
-3 2(x) + ,S o(e).mr (1 + 1a 3“x YG(E;;x)dE

S

: - - 3
da e L2 () 4 e 5(xi0)dE
] ¢ n, m

X S £ X

(3.2)

has no real irregular frequencies for rea! and
positive values of the parameter 2 Numeri-
cal experimentation suggests that for veli
of the parameter 1 ranging fros 0.2 to 0.3,
the performance of (3.2) is optimsl. A
discussion of the properties of equations
(2.3), (3.1) and (3.2) for acoustic-wave prob-
lems, is given by Colton and Kress (1983).

Approximating the body boundary by a
collection of panels S., and sstisfying
(3.2) at collocatior points locsted at the
panel centroids, we obtain the discrete set of
equations

L s+
Jg -

m
b3

(Y

)G(E;Xi)di

(1 + ia =

1G(x,38)dE
n 1
X

i = 1'_._".\; (3.3)

The integral of the double normal deriva-
tive of the singular part of the wave-source
potential needs careful interpretation For
i®j, it is equal to the normal velocity on the
panel due to 8 distribution of dipoles of con-
stant strength on its surface. This value is
known to exist at points not lying on its
edges.

LT ————_—

The numerical conditioning of equation
(3.1) is worse than that of the Green equation
(2.3). This is generally known to be true for
integral equations of the first kind. Hence,
the perturbations 1-6 casuse errors im the
solution of (3.1) large relative to those in
the solution of (2.3).

The effect of equation (3.1) on the solu-
tion of (3.2) is controlled by the wmagnitude
of the positive quantity o . If a =0, (3.2)
reduces to the Green equation. For finite
values of o , (3.2) is expected to be free
of irregular frequency effects. This turms out
oot to be the case in practice for very small
values of «a vhich damp excessively the
effect of equation (3.1). In this case the
error is the hydrodynamic bhydrodynsmic coef-
ficients near the irregular frequencies of
(2.3), slthough reduced, is still substantial.
For large values of «a , the effects of
equation (3.1) asre dominant. The predicted
coefficients are nov erroneous mnear its own
irregular frequencies. Smaller, but still
asoticesble, errors are also present for all
frequencies due to its poor conditioning. The
magnitude of both can be obviously controlled
by the selection of & sufficiently small value
of a which strikes s balance between the
errors coming fros the irregular frequencies
of the Green equstion (2.3) snd those coming
from the ill-conditioning of equatiom (3.1).

Computations of the heave and sway coef-
ficients of & circle and a rectangle (B/T=2),
indicate that the valuve of 1 =0,2 produces
satisfactory results over a wide range of fre-
quencies. A value of less than one is not
surprising. If the error im the solution of
(3.2) resulting from the presence of equations
(2.3) is to be compsrable to the error due to
equation (3.1), the value of a wust be
comparaable to the ratio of their condition
pumbers which is a quantity with magnitude
less than one.

A cowputer program has been writtenm for
the hydrodynsmic analysis of sections of gene-
ral shape in deep water [ Sclavounos (1985) ).
The computstional effort involved in the set-
up and solution of the discrete equations
(3.3), is for all practical purposes compara-
ble to that required when o =0. This is due
to the existence of recurrence relations
which express higher derivatives of the wave-
source potential in terms of derivatives of
lover order. The size of the linear system is
unaffected by the addition of (3.1) to the
Green equation.

Figure 5 presents the heave hydrodynamic
coefficients of the circle and the rectangle
near the first irregular frequency of equation
(2.3). Predictions for = =0, 0.02 and 0.2 are
compared to those obtained from the hybrid-
integral solution of Nestegard and Sclavounos
(1984) which is known to be free of irregular-
frequency effects. The corresponding results
for sway are presented in Figure 6 with
anslogous coaclusions.
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Heave and sway added-mass and damping coefficients near the first
irtegular frequency of the Green equation (2.3), obtained from the
solution of equation (3.3) : (==—— ) 1 =0 ; (==--=) 220,02 ;
(=—.——) :=0,2; (— —) hybrid-integral solution of Nestegard and
Sclavounos (1984).
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Heave and sway added-mass and damping coefficients near the first
irregular frequency of equatiom (3.1), obtained from the solution of
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Figures 7 and 8 illustrate the performance
of equation (3.3) near the first irregular
frequency of equation (3.1). Results are pre-
sented for ~ = 0, 0.2 and from the solution
of equation (3.1) alone. The predictions for

a=0 are accurste over that frequency range,
and are in good asgreement with the results
for 2 =0,2. The larger discrepancies occur
in the heave damping coefficients, but these
are probably due to its small values. The
predictions from equation (3.1) display the
excpected error near its first irregular fre~
quency. Evident is also a non-negligible er~
ror over a wider frequency range, mainly in
the sway coxfficients. This is larger than the
corresponding error associated with equation
(2.3), and is due to the larger conditionm
number of equstiom (3.1). The effect of (3.1)
in tbe composite equation (3.3) is here re-
duced by the selection of a value forjiequal to
0.2.

‘In all cases tested, half of the boundary
of the sections analysed has been spproximated
by 10 straight segments. Away from the irregu-~
lar frequencies, the agreement between the
coefficients obtained from equation (3.3) for
21 =0,2 sand the numerical scheme of Nestegard
and Sclavounos is very good. Work is currently
in progress for the extention of the present
method to three dimenzions.
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